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Introduction
Despite an increased reliance on computational modeling in engineering and physics,
graphically comparing computational and experimental results has often been
qualitative, via a so-called ‘viewgraph norm’ [1], [2]. Image recognition, computer
vision and artificial intelligence (AI) are fields of study in themselves and rapidly
progressing, but relying on AI to grade image similarity evokes a notion of asking for
an expert judgement, which could be seen as an artificial version of the viewgraph
norm. It is, therefore, desirable to use simpler metrics which are more tractable and
unambiguous, even though they may not be as ‘intelligent.’

In this document, a few metrics are studied by systematically altering an image and
their implications are analyzed.

Similarity Metrics
If A and B are m×n monochromatic image intensity maps, there are a few metrics
that can be used as measures of their difference. These metrics are scalars so that the
correlation between two 2-dimensional arrays (images) is summarized by single
values. Probably the simplest is essentially the ‘size’ or the ‘absolute value’ of the
difference of the two — mean squared error, root mean squared error or the
Frobenius norm of the difference matrix [3]. They differ in terms of normalization or
whether the square root is taken, but here the mean squared error (MSE) in Eq. 1 is
used as their representative.
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where Ā and B̄ are mean intensities of A and B, respectively [4]. r = 1.0 means A and
B are identical, 0.0 means they are completely uncorrelated and -1 means that one is
the negative of the other [5].

Structural Similarity Index Measure (SSIM) is another metric that was introduced by
Wang et al. [6] which takes the form
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and C1 = (K1L)2 and C2 = (K1L)2 are small constants in order to avoid potential
divide-by-zero errors, where L is the image intensity range. For this report the
implementation in scikit-image [7] was used with the default parameters, meaning
K1 = 0.01 and K2 = 0.03. The range of SSIM is -1.0 to 1.0, the same as R.
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Image Correlation
As an example, a 750 pixel by 750 pixel, 8-bit grayscale image, meaning that the
intensity ranges from 0 (black) to 255 (white), shown in Fig. 1, is designated as a
target, or ‘experimental result.’

Figure 1: Original grayscale image.

This image was altered systematically to create ‘computational models,’ and the
correlations between the ‘experiment’ and ’model’ are presented below. First, the
image was altered by replacing certain percentages of the pixels by random numbers
ranging from 0 to 2551. Figs. 2 show the difference, original − altered, meaning that
red indicates the original is darker and blue, the original is lighter.

Note that the mean intensity of Fig. 1 is 115.9, meaning that on average it is on a
darker side (< 128), and the random changes make the altered images lighter,
rendering the difference images in Figs. 2 on the negative or red side. The average
intensities after the alterations are 118.0, 119.7, 121.1 and 122.4 for 20%, 40%, 60%

1Random changes were made using Python’s pseudo-random number generator (the Mersenne
Twister) which has a reasonably long period, thus the randomness is fairly consistent.
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and 80% changes, respectively, and the average values of the difference images in
Figs. 2 are -2.0, -3.8, -5.2 and -6.5, exemplifying the ’viewgraph-norm’ where a
cursory observation of these difference images can still reveal, at least qualitatively,
the nature of alterations.

(a) 20% of the image is randomly altered. (b) 40% of the image is randomly altered.

(c) 60% of the image is randomly altered. (d) 80% of the image is randomly altered.

Figure 2: Intensity difference between the original (Fig. 1)
and randomly altered versions.

R, SSIM and the inverse of MSE all correspond to the amount of changes that took
place, as shown in in Figs. 3.
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Figure 3: Pearson correlation coefficient R, SSIM and
inverse of MSE, versus the percentages of pixels altered
from Fig. 2.

Fig. 3 includes the metrics from images where 3%, 5% and 10% of the pixels are
randomly altered (not shown in Figs. 2) to show how precipitously SSIM and 1/MSE
drop with very minor alterations, and flatten as the alterations increase, meaning that
once alterations to the image reach a certain level, further alterations do not result in
significantly different SSIM or MSE. R, on the other hand, does not show such
sensitivities.

Fig. 3 establishes that if the alterations are systematic, any of the metrics can be a
fairly objective mceasure of the similarity between two images. This statement is true
if the alterations are in the form of size-scaling or shifting by a few pixels (examples
of scaled images shown in Figs. 4). The analysis of the metrics from these images
will be elaborated later.
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(a) Scaled by 99%. (b) Scaled by 98%.

Figure 4: Intensity difference the original (Fig. 1) and size
scaled. 1/MSE = 4.932×10−3, R = 0.9532 and SSIM
= 0.2713 for 4a, 1/MSE = 3.355×10−3, R = 0.9310 and
SSIM = 0.1067 for 4b.

One of the issues, or the advantages, depending on applications, with the correlation
coefficient R is that it is insensitive to linear transformation due to normalization with
respect to the mean [5].

Figs. 5 show the differences when the original image intensity is scaled down by 20%
(×0.8), and scaled up by 20% and shifted by -20 (×1.2−20) then compared against
the original. They both have R = 1.0.

This holds true for the case where the original image intensity is shifted by 20 (not
shown), or the case where the original image intensity is scaled up by 20% (×1.2; not
shown).

6



(a) Intensity scaled down (×0.8). (b) Intensity scaled (×1.2) and shifted (−20).

Figure 5: Intensity difference the original (Fig. 1) and
intensity linearly scaled.

Another issue with the correlation coefficient R is that one for the whole image is not
the average of those from subimages, as can be gleaned from Eq. 2. If an image with
20% of its pixels randomly altered is broken up in quadrants and metrics are
calculated on each, the average SSM and MSE of all the quadrants match those for
the entire image. The average correlation coefficient R, however, does not (0.6512 for
the average of all four quadrants whereas it is 0.7237 for the entire image in Fig. 6).

Figure 6: Similarity metrics; quadrant-wise vs. entire image.
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Incidentally, the different metrics in different quadrants are due to the nature of the
alterations and the characteristics of the original image; uniformly random changes
cause the intensity histograms to flatten and increase the contrast. The intensity
histogram of the third quadrant (Fig. 7b) is more ‘peaky’ than that of the first
quadrant (Fig. 7a) and uniformly random changes cause more drastic shifts in the
histogram.
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(a) First quadrant (top right).
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(b) Third quadrant (bottom left).

Figure 7: Intensity histogram changes due to the percentage
of pixels randomly modified.

Discussions and Summary
Fig. 8 shows the summary of the difference metrics for all the altered images
discussed above. Cases (a) through (d) correspond to a portion of Fig. 3.
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Figure 8: 1/MSE, R and SSIM for various alterations: (a)
20% random change, (b) 40% random change, (c) 60%
random change, (d) 80% random change, (e) shifted 2 pixels
to right, (f) shifted 4 pixels to right, (g) shifted 2 pixels
down, (h) shifted 4 pixels down, (i) scaled down by 1%, (j)
scaled down by 2%, (k) scaled down by 1% in x only, (l)
scaled down by 2% in x only, (m) scaled down by 1% in y
only, (n) scaled down by 2% in y only, (o) intensity shifted
by 20, (p) intensity scaled up by 20%, (q) intensity scaled
down by 20%, (r) intensity scaled up by 20% and shifted by
20.

As alluded to above, systematic changes result in predictable metrics; each of the
pairs (e)-(f), (g)-(h), (i)-(j), (k)-(l), and (m)-(n) represents a small change in the
former and a (relatively) large change in the latter of one form, and all the metrics for
the former indicate a better match than the latter.

When different types of alterations are compared, there are some discrepancies
among the metrics. For example, between 2 cases where the image is shifted by 2
pixels, case (e) (image shifted to the right) is deemed just as good (or bad) a match as
(g) (image shifted down) based on R (0.9613 vs. 0.9611) or 1/MSE (5.926×10−3 vs.
5.914×10−3) but SSIM clearly indicates that (e) is a worse match than (g) (0.2910
vs. 0.3598).

Between 2 cases where the image is scaled down by 2% in one direction only, R and
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SSIM scores for (l) (only in x) and (n) (only in y) are similar (0.9511 vs. 0.9584 and
0.2652 vs. 0.2653, respectively), but 1/MSE indicates the latter is a better match than
the former (4.697E-03 vs. 5.561E-03).

Cases (p) and (q) in Fig. 8 reveal another interesting comparison between the metrics.
As mentioned above, these linearly transformed images resulted in R = 1.0, therefore
R does not offer any insight as to the level of alterations. 1/MSE for them are the
same, as the intensity of the both was scaled by the same amount (20%), but SSIM
indicates that the scaled up version (p) is slightly better than the scaled down version
(q).

These may be due to the fact that SSIM takes into account the changes in contrast,
luminosity and the ‘structure’ of the image [6] while R and MSE are more or less
simple comparisons in terms of luminosity (intensity) with no implied consideration
for other features of the images. It is possible that the changes in different portions of
the image cause one metric to be affected more than others, either compensating or
accentuating the overall metrics.

For example, Fig. 9a shows that the difference in SSIM for the third quadrant
between the shifted-to-the-right and shifted-down is much larger than that of MSE,
thus SSIM indicating the shifted-to-the-right version is better, while the MSE scores
are somewhat averaged out by those from the other quadrants. Similarly, the
differences in the metrics for the forth quadrant in Fig. 9b cause SSIM to average out
for the entire image, while the little discrepancy in MSE for that quadrant causes
overall MSE to favor the one where the image is scaled in the y direction only, to be
deemed better than the one where it is scaled in the x direction only. Note again that
the averaging from different portions does not work for R.

(a) Shifted by 2 pixels; to the right by vs. down. (b) Scaled by 98%; in x only vs. in y only.

Figure 9: Metric comparison by quadrants where overall
metrics do not agree.
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More striking example is one similar to what is presented in [5], where a blatant
alteration is made whose average intensity is the same as the average intensity of the
image. Table. 1 compares an image where 3% of the figure is randomly altered and
one with a superimposed text, where all metrics imply that the latter is a much better
match to the original than former.

3% of the pixels are altered. Original with a superimposed text.

1/MSE 0.0043 0.0077
R 0.9487 0.9702
SSIM 0.5062 0.9009

Table 1: Image comparison where metrics do not
correspond to the visual difference.

Furthermore, without obvious alterations, ‘better’ or ‘worse’ could be a matter of
interpretation. For example, Table 2 shows 2 images where one is clearly considered
better than the other in terms of all the metrics. However, it is obvious by the method
of alteration that every pixel of the image on the right is ‘wrong,’ whereas 80% of
pixels in the picture on the left match the original perfectly.

11



20% pixels altered (Fig. 2a). ×1.2 on all pixels2.

1/MSE 7.138E-04 1.601E-03
R 0.7237 1.0000
SSIM 0.1037 0.9675

Table 2: ‘20%’ difference.

In conclusion, generally any of the 3 metrics examined above can be used as a
measure of difference between images. However, it is prudent to check all to see if
they agree, and when they do not, examine as to why, possibly checking them on
various portions to see if those from one or more portions of the images are skewing
the overall scores. As evidenced in the last example above, even when all metrics
agree, blind reliance on them should not be automatic and an expert judgement is still
relevant.

2By multiplying the intensity by 1.2, the range of pixel values actually changes to 0−306, making
it technically not an 8-bit grayscale image. The metrics are calculated without converting it to 8-bit
(i.e. not pruning the higher-than-255 values to 255).
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